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An exact general solution is presented for a multiply infinite class of irreversible filling or exchange
processes on a rectangular lattice. There are many known applications in physics, chemistry, and biolo-
gy. The dynamics of this class of models follows from the generating function for the number of permu-
tations of n elements with specified cycles. As examples, general solutions are given for random sequen-
tial adsorption on a 2X « strip with nearest-neighbor exclusion and for a conserved-order dynamics
model recently formulated by Privman [Phys. Rev. Lett. 69, 3686 (1992)].

PACS number(s): 05.50.+q, 82.20.—w, 64.60.Cn

The stochastic filling of lattices has been studied for
many years and continues to generate considerable in-
terest [1-4]. An early solution of a problem of this type
was the derivation of the jamming density for an infinite
one-dimensional (D =1) array, given a rule that forbids
occupying the nearest neighbor of an already filled cell
[5]. Many other special cases have since been treated, as-
suming particular initial conditions on the underlying lat-
tice. Here, I give an exact general solution for all initial
states, for a multiply infinite class of irreversible filling or
exchange processes. This solution encapsulates the dy-
namics of many systems known to be solvable by exact
truncation, either fully or as an infinite subhierarchy. Its
compact form enables easy computation of jamming den-
sities and derivation of dynamical behavior. In more
complex multidimensional lattices, one finds isomor-
phisms with direct sums of systems in this class. This
may lead to an insight into unsolved problems in D > 1.

€ ¢y c, csy
0 et+A ¢ c, c3
0 0 e+2A ¢ c, c3
M=—1]0 0 0 €e+3A ¢ cy
0 0 0
0 0 0 0 0

In (2), {c;} is a set of (real) free parameters. The spectral
scale A sets the unit of time. The zero point of the spec-
trum, €, is a positive parameter that results in an overall
multiplicative factor exp(—et) in P and plays no further
dynamical role. For notational convenience, the indices
of the superdiagonals with ¢;7<0 will be referred to as the
sequences S ={...,5,...,5;, ...}

The class of generators defined by (2) has four impor-
tant characteristics. (i) These matrices are upper triangu-
lar. The system of rate equations (1) can therefore be in-
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Consider a rectangular lattice in a space of D dimen-
sions, with N >>1 total sites. Random filling (or an
equivalent exchange process) is assumed to occur under a
rule that a site may be occupied only if certain conditions
on its local neighborhood are met. In general, as is well
known, such a process can be described by a homogene-
ous linear stochastic system

jd—;—:M'P . (1)

In (1), P is a vector of (unnormalized) probabilities whose
precise representation and interpretation are partly
matters of choice and partly depend on the nature of the
rule restricting the filling process. Explicit examples of
representations of P are given below.

The defining feature of the processes discussed here is
an N X N evolution matrix of the form

CN—1
CN—2
(2)

(]
et+(N—1)A

terpreted as describing a hierarchical process in which
larger connected patterns (lattice animals) of “live” cells
are destroyed as cells are occupied, and smaller lattice an-
imals are thereby created [6]. (ii) The eigenvalues of (2)
are equally spaced. This permits a representation of the
probability vector P in which P, is the probability of a
configuration in which there are k +n live cells in the in-
terior of a lattice animal. Here, n is a fixed integer, typi-
cally small, set by the filling rule and the dimensionality
of the underlying lattice. Characteristics (i) and (ii) typify
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random sequential adsorption (RSA) and other irreversi-
ble processes [7]. (iii) The spectrum is nondegenerate.
(iv) All elements on a superdiagonal are equal. Charac-
teristics (iii) and (iv) are specific to the class of processes
discussed here. They imply that there is only one type of
lattice animal with a fixed number of interior points, and
that a system of size N +1 described by (1) and (2) in-
corporates the dynamics of a system of size N or smaller.
This permits exact solution by truncation, providing an
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opportunity that has been used to advantage in previous
analyses [4] employing other methods. The theorem that
follows makes the nesting property of the general solu-
tion of (1) and (2) explicit. It specifies the fundamental
matrix exp(M¢) for the class of evolution operators
defined by (2), generalizing the ansatz in [8] and the gen-
eral solution for D =1 random dimer filling [9].

Theorem. In units of the spectral scale A, a fundamen-
tal matrix associated with (2) is

1 Qi(x) Q,(x) Oy —1(x)
0 x xQ;(x) xQ,(x) xQp _o(x)
0 o0 x?  x2Q(x) x2Qy _5(x)
exp(Mt)=x°¢ o o 0 x3 3
0 o0 0 0 xN72Q,(x)
0 0 0 0 Nl

In (3), Q,,(x) is a polynomial in x =e ~/, of order at most
m, with Q,=1. The generating function of this family is

m__gom

S ¢ (sx)

meS m

G(s,x)=3 Q,(x)s™=exp (4)
m=0

It is assumed that (3) is well defined for N arbitrarily
large, and in particular that the {c,,} in (2) are suitably
bounded for m — oo [10] so that the sum in the exponen-
tial in (4) converges in a finite neighborhood of s =0.

As illustrated in examples below, in a typical applica-
tion with an infinite sequence of nonzero superdiagonals,
c¢,, =c for sufficiently large m. The resulting geometric
subsequence in (4) leads to an overall factor in G (s,x)
that is polynomial in x. Note from (3) that increasing the
size of the system from N to N +1 adds new information
but does not change the preexisting structure.
Note also that G(s,x)=F(sx)/F(s) in (4), where
F(z)=exp(3 c,z*/k) has the form of the generating
function of the cycle indicators, C,(cq,c¢,, . . .,c, ), of the
symmetric group. In principle, this allows the descrip-
tion of a given model in permutation terms.

These results can be verified as follows. By substituting
(3) into (1), one confirms that (3) is a fundamental matrix
solution of (1) and (2), provided the Q,,(x) satisfy the
differential equations [11]

do,,
dx

m—1

= Cp_px" "0, (x), (5a)
n=0

X

and the algebraic relations

m—1
mQ, (x)= % (m —n)c,, _,(x"""—1)Q,(x) . (5b)
n=0
From (5b), Q,,(1)=0 for m >0, and therefore (3) equals
the identity matrix E at ¢ =0, as is required to enforce
the initial conditions. By a theorem of linear systems

[

theory, if a fundamental matrix solution X(z) of (1) has
X(0)=E, X=exp(Mt). This confirms (3). Linear sys-
tems theory also tells us that a system (1) and (2) of finite
size has a general solution P(z)=exp(Mzt)-P(0). Using
(3), this solution is

N—1
P ()=x*"17¢ 3 Q0 (x)P;4,,(0) . (6)

m =0

One observes from (4) and (6) that the initial conditions
P, (0)=s*"1%¢€ decouple the system and result in a solu-
tion P =(xs)k_1+eG(s,x). Substitution of this result in
(1) confirms (4).

Random dimer filling in D=1. 1t is instructive to ap-
ply these considerations to the standard D =1 example in
which an arbitrarily long array of cells is randomly filled
by dimers (o-0). Two equivalent representations of P are
available. In the first, P, (z) is defined as the probability
that a random k-long segment is empty, without regard
to cells outside this segment [12]. Then S ={1}, ¢, =2,
and one has the evolution operator

2 0 0

o

M1= - (7)

S O OO

1 2 0
0 2 2
0 0 3

in which the main diagonal entries correspond to filling
interior pairs of a k segment and the superdiagonal 2’s to
filling the end cells and their external nearest neighbors.
Using (4), (7) gives G(s,x)=exp[2s(x —1)], and we read
off the polynomials Q,, =2™(x —1)™/m! known to deter-
mine the general solution (6) for random dimer filling in
D =1 [9] and to characterize the combinatorics of that
process [6]. For an initial empty lattice, the jamming
density is 0*=1—P (0 )=1—G,(1,0)=1—e "2
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The second representation defines P, (¢) as the proba-
bility of finding an empty segment precisely k cells long,
as in the early treatment of monomer D =1 RSA with
nearest-neighbor (NN) blocking [13]. Given this repre-
sentation, there is a parent-child tower of rate equations
in which the population P, is fed by an infinite sequence
{Pr+2Pr 43 ...}, and the evolution operator takes the

form
0 0 -2 =2
0 1 0 -2 =2
M,=—| 0 0 2 0 -2 —=21. (8
0 0 0 3 0 -2

From (4), (8) is associated with the generating function

2
1—sx

— ©)

GZ(S,X):GZS(X_” I

For an initial empty lattice, P,;(¢)=lim,_ [(1
—5)*G,(s,x)]=exp[2(x —1)](1—x)?, and we again have
0*=1—e"2

The two representations M; are related by the similari-
ty transformation S~ 'M 1S =M,, which is realized by
the k-weighted sums and (shifted) second differences of
the respective representations P :

1 2 3 4
0 1 2 3
S=|0 0 1 2 3 4 |,
0 0 0 1 3
(10)
1 -2 1 0
0 1 -2 1 0
S7l=10 0 1 -2 1 0
0 0 0 1 -2 1

More general families of D =1 irreversible processes,
such as the infinite set of cooperative RSA models con-
sidered in [8], also fall into the class defined by (2).

D=2 square ladder RSA with NN blocking. Recently,
several groups have analyzed the dynamics of random
filling of a 2X oo strip with nearest-neighbor exclusion
[1-3]. This process has an infinite subhierarchy which is
the direct sum 4® B of two D =1 processes of class (2),
equivalent under (10). In particular, dropping the
lowest-order terms, omitting an overall factor x, and scal-
ing time by 7z — 2¢, the rate equations in [1] can be written
as independent subsystems of the form (1), with genera-
tors
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0 -1 -2 -2
o 1 -1 -2 =2
M,=—|0 o0 2 -1 -2 =2/,
0o 0 o0 3 -1 -2
(11)
o 1 0 0
0 1 1 0 0
M,=—|0 0 2 1 0 O
o 0 0 3 1 0

Using (4) and (11) we derive generating functions
gp=exp[s(x —1)] and g,=gz(1—sx)*/(1—s)*. The
s =1 limit gives solutions for an initial empty lattice.
Taking account of the asymptotic behavior of the
lowest-order terms and incorporating the proper normali-
zation, each g yields the known jamming limit [1-3]
1(1—1/2e). By inspection of g, the general solution (6)
for B can be expressed in terms of the polynomials
(x —1)"/m!. The general solution for A follows from
the observation that the systems defined by (11) are
equivalent under (10). One may interpret subsystem B as
a cooperative sequential adsorption process in D =1 in
which there is unit probability per time that an empty
cell will be occupied if (say) its left nearest neighbor is al-
ready occupied, and also if its next-nearest neighbor or
any other cell further away is occupied (cf. [8]). As point-
ed out in [3], any sequential adsorption process on an
n X oo strip is equivalent to a D =1 process, in general in-
volving competitive adsorption and long-range coopera-
tivity. The results obtained here raise the question of
which such processes, particularly for D > 1, incorporate
infinite subhierarchies that are equivalent to direct sums
of exactly solvable processes in the class (2).

Conserved-order-parameter dynamics. Privman recent-
ly presented an interesting model in this class based on
pairwise exchanges among cells, rather than random
filling [14]. He considers conserved-order dynamics on a
D =1 infinite lattice equally populated by particle species
A and B. The only allowed dynamical moves are
energy-lowering exchanges of nearest neighbors that de-
crease the number of adjacent A -B pairs. Given the lo-
cally conserved difference of the A and B densities, the
dynamics of the system depends on the initial
configuration, even for t — .

Privman solved the model exactly for two special
choices of initial conditions in which the hierarchical
rate equations decouple: the alternating pattern
...ABABAB. .., and random filling. In the notation
used here, P, represents the probability that a random
(k +1)-long segment is ordered as ... ABABAB... .
This model then has S ={1,2}, with ¢,=c,=2, corre-
sponding to two types of AB pair exchanges at the ends
of a sequence of fully ... ABAB ... ordered cells: (1)
pairwise exchange of the pairs of cells at the ends of the
sequence; (2) exchange of the two end cells with their
nearest neighbors outside the sequence. The evolution
matrix then has the form of the D =1 dimer filling gen-
erator (7), but there is an extra superdiagonal of 2’s:
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0 5 2 0 lations
o 1 2 2 o0 (m+1)Q,, +1=—2(1—x)[Q,, +(1+x)Q,, ],
M,=-j0 0 2 2 2 0 (12) m=1,23,..., (14)
0 0 0 3 2 2

From (4) and (12), the associated generating function is
G..(s x)=e2[s2x2/2+sx—s2/2—-s] (13)
€x > *

The factors of the form exp[(z2/2+2z)] in (13) are ex-
ponential generating functions for the number of involu-
tions of n letters. For s=(1,1), (13) reproduces the
jammed asymptotic states and dynamics of the interface
densities derived in [14] for initial alternating and ran-
domly filled states. From (5b), we have the recursion re-

for the polynomials in (6). Explicitly, Q,=2(x —1),
0,=03x—1)x—1), 0;=2/3(1+5x)(x —1)% ... .
These results, the freedom to parametrize M in
(2), and the nesting property of exp(Mt?) suggest
that the class defined by (2), augmented by similarity
transforms, may contain all models exactly solv-
able by truncation. If so, this would give an alternative
way to test for exact solvability in processes with D > 1.

I thank D. J. Gross, H. Widom, and A. P. Young for
helpful discussions, and J. W. Evans and V. Privman for
useful suggestions and for sending preprints.

[1]1 Y. Fan and J. K. Percus, J. Stat. Phys. 66, 263 (1992).

[2] A. Baram and D. Kutasov, J. Phys. A 25, L493 (1992).

[3]J. W. Evans and R. S. Nord, J. Stat. Phys. 69, 151 (1992).

[4]J. W. Evans, Rev. Mod. Phys. (to be published).

[S] P. Flory, J. Am. Chem. Soc. 61, 1518 (1939).

[6] A. Baram and D. Kutasov, J. Phys. A 22, L251 (1989),
link the Glauber dynamics of the hierarchy to a count of
lattice animals. Equivalent combinatoric derivations are
presented by R. Dickman et al., J. Chem. Phys. 94, 8252
(1991); and by Y. Fan and J. K. Percus, Phys. Rev. A 44,
5099 (1991).

[7] See Ref. [4], Sec. IVD. For a discussion of the structure
of infinite evolution matrices for the most general adsorp-
tion processes, see J. W. Evans and R. S. Nord, J. Stat.
Phys. 38, 681 (1985). There is a representation of P out-
side the class (2) that permits a formal general solution of
multidimensional sequential adsorption. In particular, for
a general adsorption process, let P, be the probability of a
random lattice animal with precisely k internal points,
k=1,2... . Then the associated evolution matrix M has
the spectrum {0, —1,—2,...}. Only the first superdiago-
nal is nonzero, with entries { —d,, —d,, —d;, ...}, where
d; is the mean ratio of boundary to interior points of all
lattice animals with i interior points. By a Laplace
transform of the resulting system (1), the non-
zero elements of X=exp(Mt) are X;=x'"!,

X itm=didis1...diyyx' " x—1)"/m\. For an initial
empty lattice, the density of occupied cells can then be ex-
pressed as 6=—3 7_,a;(x —1)Y/j\, a;=d,d, -+ - d;. For
NN blocked random filling, series of this form have previ-
ously been derived by Baram and Kutasov [6], and by Fan
and Percus [6], using combinatorial arguments.

[8]7J.7J. Gonzalez et al., Chem. Phys. 3, 288 (1974).

[9] M. Bartelt and V. Privman, Int. J. Mod. Phys. B 5, 2883
(1991).

[10] If one considers (1) as a priori an infinite system, rather
than associating the behavior for N— o with arbitrarily
large N in (3), the solution involves an arbitrary function
f(t). E. Hille, Ann. Mat. Pura Appl. 55 (4), 133 (1961).
The nesting property of exp(M?) noted below in the text
allows an unambiguous solution for cases in which S is an
infinite sequence, without the necessity to introduce a
(possibly unphysical) boundary condition.

[11] Because x appears only in the combination sx in G(s,x),
Egs. (5) define polynomials of the Brenke type. R. P. Boas
and R. C. Buck, Polynomial Expansions of Analytic Func-
tions (Springer, New York, 1964).

[12] E.g., E. R. Cohen and H. Reiss, J. Chem. Phys. 38, 680
(1963).

[13] B. Widom, J. Chem. Phys. 58, 4043 (1973).

[14] V. Privman, Phys. Rev. Lett. 69, 3686 (1992).



